
DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 1

Database Exam Project
Meraki webshop

By Nikola Wulf-Andersen
1. semester KEA 25-05-18

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 2

TABLE OF CONTENTS

Introduction	 							 3

The project	 							 4-11
...
	 My Account							 5
...
	 Shop								 6
...
	 Single view							 7
...
	 Cart			 					 8
...
	 Dashboard - Admin						 9
...
	 Users - Admin		 					 10
...
	 Products - Admin							 11

Normalization	 							 12
...
	 First Normal Form						 12
...
	 Second Normal Form						 12
...
	 Third Normal Form						 12

Structure & datatypes							 13-14
...
	 Entity Relationship diagram					 13
...
	 Datatypes							 13
...
	 Primary and foreign keys						 14

ER diagram								 15

Databases								 16
...
	 Text files & MongoDB						 16
...
	 MySQL								 16
...
	 SQLite								 16

Choice of databases							 17

Execution & commands							 18-27
..
	 Setting up database in MySQL					 18
...
	 ER diagram in MySQL						 19
...
	 CRUD								 20
...
	 Prepared Statements						 22
...
	 Transactions							 23
...
	 Shop filters							 24
...
	 VIEWS								 25
...
	 Stored procedures						 26
...
	 Triggers								 27

Execution & commands MongoDB					 28-31
..
	 Install MongoDB							 28
...
	 Starting Mongo							 28
...
	 Creating database						 28
...
	 CRUD								 29

Reflection								 32

Conclusion								 33

Literature								 34

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 3

INTRODUCTION

This exam report is about databases and the understanding of its structure, datatypes, differ-
ent types of databases and the creation of the database itself. To illustrate the theory in praxis
I created a project that shows two types of databases and how they are managed.

Throughout this report I will explain the theory behind databases such as normalization, entity
relationship diagrams, datatypes, different types of databases and the execution of the project
itself.
I chose to create a project simulating a web shop which is close to a real-world scenario. It is an
important part of the process to actually think about the structure and relationships between
the tables as if it were a real project with actual data. Though the project is just a prototype and
not a full-blown web shop, it demonstrates the important features and creates a context for the
data which is the main purpose of it.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 4

THE PROJECT

In the beginning of the process I started out creating a basic sitemap to get
an overview. The project consists of a front-page where the user can choose
to signup or login to their account. If the user doesn’t have an account they
can create one, and then have the ability to login and start shopping. When
logged in they can look through the shop pages, click on items and add
them to their cart. They can also edit their profile and logout when they are
done shopping.

To manage the web shop, I created a user profile for myself with the status
set to admin. If I login to the web shop I will get an overview of the dash-
board, all the products and users in my system. In the administrator site I
will have the option to delete, update and create both products and users.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 5

MY ACCOUNT

The first thing a user will meet when they login is their account page. On
this page is their personal information shown like their name email and
password and they have the option to update the information. The users
actually have a bit more information than displayed here such as their id
and status.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 6

SHOP

When the users are logged in they have access to the shop. The shop dis-
plays all the products in the web shop. At the top of the page is a search/
filter bar. Here the users have the option to search for a product or filter the
page by category or product line. They also have the opportunity to sort the

products by price either from high-low or low-high. If a product is on sale
a green bobble will appear with the percentage and the reduced price will
replace the original one.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 7

SINGLE VIEW

If the user clicks on a product a new page will open and show that prod-
uct only, but with additional data about the product such as a detailed de-
scription, size selection and expiration date. The user can select the desired

size and add the product to the cart. When a product is added to the cart it
will be saved in the table cart and the time and current price will be logged.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 8

CART

Each product in the cart is displayed with an image, category, size, product
line, description, price and quantity. The user can remove an item from the
shopping list by clicking on “remove” on a chosen item. In the bottom of
the cart the total price and number of items are calculated.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 9

DASHBOARD

When the web shop administrator is logged in, in this case me, I will have
access to information via the dashboard as well as all the users and prod-
ucts in the system. The dashboard contains some overall information about

users, products, sales, categories, product lines and so on. I also have the
option to create new categories and product lines in the shop.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 10

USERS - ADMIN

In the users page all users are displayed in a table with their name, email
and id. As administrator I have authority to delete, update and create users.
If the little trash icon is clicked that specific user will be deleted from the
system. To edit a user, I can click the little pencil and then a new row be-

neath the user will appear, where the new information can be entered and
then updated. To create a new user, I can click on the button “Add user” and
a template will appear where the information for a new user can be entered
and saved.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 11

PRODUCTS - ADMIN

The products page contains all the products in the web shop, displayed in
a table. Equivalent to the users page the administrator has the authority to
delete, update and create products. As the users page the little trash icon is
for delete, the pencil is for edit and the button at the top “Add product” is
for creating new products.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 12

NORMALIZATION

The term normalization is often used within the field of databases. It deals
with the process of organizing the data in a database. This concerns cre-
ation of tables, setting correct data types and establishing relationships
between tables to avoid redundancy and inconsistent dependency. If the
database is not normalized and several tables are not updated or deleted
correctly due to missing relationships, the database can grow out of hand
and become very slow. Also, there is a chance that some tables will get up-
dated and some tables that should be related won’t get updated. This can
lead to incorrect data which can cause very fatal errors in the system. If the
database is normalized these errors can be avoided and the database will
run faster.

There are three levels of normalization: “First Normal Form”, “Second Nor-
mal Form” and “Third Normal Form”. The “First Normal Form” is the lowest
level and the “Third Normal Form” is the highest level of normalization.

First Normal Form

•	 Eliminate repeating groups in individual tables
•	 Create a separate table for each set of related data
•	 Identify each set of related data with a primary key

Second Normal Form

•	 Create separate tables for sets of values that apply to multiple records
•	 Relate these tables with a foreign key

Third Normal Form

•	 Eliminate fields that do not depend on the key.

I strived to normalize my database to the “Third Normal Form” which is
the highest level. I did that by organizing all my data in an “entity relation-
ship diagram” and dividing the data into the correct tables and look up
tables with the appropriate datatypes. When doing my entity relationship
diagram, I had three main rules in mind: No repeated data, updates only
take place in one place and no empty values. If data were either repeated or
there could be an empty value it should always be done as a look up table
with a foreign key linked to the primary from the main table.

Another thing I did to normalize my database was to index the lookup ta-
bles if the data were repeated many times. An example of this, is that every
product in my system belongs to a certain “product line”. Each product line
has several products and if it were to be stored directly in each product, the
product line would be repeated many times. Instead I chose to index the
product lines in a lookup table and then connect the two tables by a pri-
mary and foreign key, so each product would just have the id of the product
line and then the name of it could be looked up. This makes the database
faster and it will also take up less space.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 13

STRUCTURE & DATATYPES

Entity Relational Diagram
An entity relationship diagram is a diagram that can help organize and de-
termine relationships between tables. When building an entity relationship
diagram there are several things to take into account: there is the different
tables, the determination of appropriate datatypes and last the cardinality.

The cardinality covers how the tables are connected and what type of re-
lationship they have. There are different types of relationships, it can for
example be one-to-one, many-to-one or many-to-many. The cardinality is
illustrated by drawing lines with different endings (type of relationship) be-
tween the tables. These are the different types of cardinality:

By using the cardinalities properly, it will help you and others to understand
the data structure and how each table is related. If it is just a small project
like this it might not seem as important but for larger and much more com-
plex databases it is essential to keep the overview.

Datatypes
When setting up the entity relationship diagram and later on the actual da-
tabase it is fundamental to select the correct datatypes. One of the most
important datatypes is “serial”. Each table needs a unique id which is used
to identify each row, so when it has to be either updated, deleted or select-
ed you point to the unique id. For that it is ideal to use the datatype “serial”.

“serial” is equivalent to the datatype “bigint(20)” if it is set auto increment,
unique and unsigned. Auto increment means that the number will auto-
matically be increased, so none of the ids will be identical. Since none of
the ids can be the same it should be set to unique. At last it should be set
to the attribute unsigned which implies that the number cannot have any
signs therefore it can’t be a negative id. Instead of selecting all these things
yourself you can just chose the datatype “serial” and then these settings
are selected for you.

Some of the most common datatypes which are almost always used in a
database are “varchar” and “int”. “varchar” is the datatype used for text and
“int” stands for integer and is used for numbers. When using “varchar” you
need to define how many characters is allowed to enter. This is written in
parentheses after varchar like this “varchar(20)”.
When it comes to the datatype “int” you can also specify how many dig-
its are allowed, but within the datatype “int” you also have the option to
choose “tinyint”, “smallint”, “mediumint” and “bigint” which have prede-
fined sizes.
When setting up the database it always helps to be as precise as possible
because it will make the database faster and more efficient. The more the
database knows about the data the better it will perform.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 14

Another important datatype to remember is “varbinary”. When I set up my
database I usually select the collation utf8_general_ci which means that
my database will be case insensitive. For most of the data, case is insig-
nificant, but for a password to an account for instance it is essential that it
is case sensitive, because the password can contain both upper and low-
ercase letters. The datatype “varbinary” is therefore ideal for a password
because it makes the data case sensitive.

At last I used two more datatypes for my project which is “real” and “times-
tamp”. “real” is the datatype used for money, so obviously I used that for the
prices on my webshop. “timestamp” is a datatype used for dates/time as
the name of it implies. I used the timestamp for the orders on my shop to
log when the user added the product to their cart.

Primary and Foreign keys

Primary and foreign keys are also an important factor when setting up the
entity relationship diagram. A primary key has to be unique and indexed,
so therefore it is often the id of the row. A table can only have one primary
key, that can be used as a reference to other tables where it is then called
a Foreign key.
A foreign key can appear many times and is not unique. A good example of
when to use a foreign key is if a user has three phone numbers. According to
the rules of normalization you cannot place all three phone numbers in the
main table, you have to put them in a lookup table. To connect the main
table and the lookup table you use the primary key from them main table
as a foreign key in the lookup table. For each phone number you will have
the foreign key and phone number. It is important to set the foreign key to
be indexed, because it will make the queries run faster.

Indexing is used to make the search for data faster. If a table is indexed by
id it will generate a list of all the places where that id appears. When a user
is selected the data from all the places where that specific user id appears
will be collected much faster, because the index will point to the positions
of where the data is located.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 15

ER DIAGRAM
Entity Relationship Diagram

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 16

DATABASES

Text files & MongoDB
Text files and document-based databases as MongoDB are very commonly
used for storing data. They are non-relational databases which imply that
data cannot be linked together. As mentioned both MongoDB and text-files
are based on objects and the data is therefore not organized in tables but
with JSON.

The advantages of using either text files or document-based databases are
that it is much faster than for example MySQL, and it is also very easy to
insert data, because the rules of normalization do not apply for these types
of databases. There is no real structure for the database and basically you
have the ability to insert anything into your object, and you don’t have to
think about repeated data or null values. Another advantage of using text
files or document-based databases is that you don’t have to think about
datatypes and it is very fast and easy to setup the database.

Text files and document-based databases work very well for smaller
amounts of data. The disadvantage of using this type of database is that
it does not handle complex data very well. Due to the fact that they are
non-relational databases and transactions are not yet supported it will be
a challenge to use for larger amounts, and more complex data. In that case
it will be necessary to have a more efficient structure and indexing, so it can
be more manageable for the people administrating it.

MySQL
MySQL is a relational database management system which is therefore
based on tables instead of objects. SQL is a type of programming language
that stands for “Structured Query Language”. SQL is widely used amongst
many database management systems like MySQL, PostgreSQL and Ora-

cle. The MySQL database is managed via the graphical user interface (GUI)
“phpMyAdmin” which is where the whole database is set up and can be
edited.

There are several advantages of using database management system like
MySQL. The first and most important one is that it can handle relational
data. In “phpMyAdmin” there is the option to connect tables as you wish
based on a Primary and Foreign key. If you choose “Delete on cascade” the
relational data will automatically be deleted if the main element is deleted
which will simplify the queries and make the database more efficient.
Another advantage is that it is built to handle large amounts of data and
structure it in a significantly better way than object-based databases. The
rules of normalization do not apply for object-based databases but it does
for relational databases. This means that tables should not have null val-
ues or repeated data. If the database is normalized it will be much faster,
so even though it in general is a bit slower than object-based databases it
might be more efficient in the end if there is a lot of data that needs struc-
ture and a lot of repeated data.

Sqlite
SQlite is also a relational database management system like MySQL, but
there are some differences. In MySQL the data is structured in tables and
the tables can be connected with a Primary and Foreign key so that the
database can be normalized.
The big difference between MySQL and SQLite is that MySQL strives to
implement a shared repository of enterprise data where SQLite strives to
provide local data storage for individual applications and devices. SQLite
is widely used all over the web and it works especially good for web appli-
cations.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 17

CHOICE OF DATABASES

As the project description states we have to choose two types of databases
for our project. I chose to use a text file which is object-based and MySQL
which is relational. I chose to combine those two databases because some
of my data is very simple and some of it is more complex, therefore a text
file was suitable for one part and MySQL was more suitable for the other
part.
As explained earlier in the report the concept of my project is a web shop
with users, products and orders. The users in my system have relatively lit-
tle data and only one relationship to the orders, that links the products and
users together and the products have a lot of relationship to its catego-
ries, sizes and product line which makes the structure a bit more complex.
Therefore, I chose to store the users in a text file and the products in MySQL.
If it weren’t for the fact that I could not get MongoDB to work with php on
my computer (people with mac had a lot of issues), I would have used that
instead of a text file. Since the concept of MongoDB and text files are very
similar I chose to use the text files because it was closest equivalent option.
Because I was not able to use MongoDB I will explain later in the report how
I could have done some queries if I had used it instead of text files.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 18

EXECUTION & COMMANDS MYSQL

During this project I have been using a lot of SQL commands to get data
out of the database. In the next couple of chapters I will explain how the
database was setup and some of the code and commands that I have been
using. Due to the fact that I was not able to get MongoDB to work with php
only in the terminal, I will explain some of the relevant commands and how
I set it up.

Setting up database in MySQL
I started out enabling the MySQL database via the program “XAMPP”. Then
I went in to “phpmyadmin” and created a new database called “meraki”
with the collation utf8_general_ci. Looking at my entity relationship dia-
gram I started creating the different tables and columns with the correct
datatypes.
When all tables were created I went into more>designer and started mak-
ing the relationships between the tables. Before these relationships could
be made, it was important to check that all foreign keys were set to the
exact same datatype as the primary key and that all foreign keys were in-
dexed. When creating the relationships I chose the constraint “on delete:
cascade” which means that if a product is deleted all the information about
that products sizes, category and so on will also be deleted as well. The
tables and relationships in MySQL can be seen on the next page.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 19

ER DIAGRAM IN MYSQL
Entity Relationship Diagram

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 20

CRUD

As any other database MySQL is based on four basic commands that can
create, read, update and delete. These are the most common commands
and all of them are used several times throughout my project, some in a
very simple way and some in a more complex way.

Create
The first basic command is how to create. To create something in the da-
tabase the SQL command “insert” is used. The example below is from my
project. It show what happens when a user adds a product to their cart.
The following values: id, user id, product id, price, size and a timestamp are
inserted into the cart table.
The user id and product id is what links the two together. The reason why
the price is inserted is because a product can be on sale and therefore the
current price needs to be saved. A product can come in several sizes and
therefore the size chosen has to be saved as well. At last I save a timetamps
as well so I can see when the product was added to the cart.

Read
To read from the database the SQL command “select” is used. The example
in the next column is when I have to get all the categories for the dash-
board, so the administrator will be able to see them also if a new one is
added. The little star (*) means “all” and categories is the name of the table.

After the command is executed I use the function fetchAll() to save all the
categories in an array. Afterwards a “foreach loop” can be used to print out
all the categories. If you are only expecting one element the funtion fetch()
can be used instead.

The products in my system has a lot of relational data and to retrieve that
data the different tables needs to be joined before they can be read from.
To join two tables the command INNER JOIN can be used. You also need
to specify on what parameter the two tables should be joined, in my case I
joined them on the primary and foreign key.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 21

Update
To update something in the database the SQL command “update” is used.
The example below is from when the category of a product is updated. The
update consists of three keys: UPDATE, SET and WHERE. After UPDATE you
insert the name of the table you want to update. Then you set the new val-
ue, in this case the new category id. At last you specify where. In this exam-
ple I use the product id to specify which product I want to update.

Delete
To delete from the database the SQL command “delete” is used. The exam-
ple below is also from my project and show when a product has to be delet-
ed. The command is very simple the first key DELETE FROM is followed by
the name of the table you want to delete from and the key WHERE specifies
which product should be deleted by using the product id.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 22

PREPARED STATEMENTS

An important procedure within MySQL is prepared statements with bound
parameters. Prepared statements work as a template for the query with
empty placeholders as parameters. These placeholders are later filled in
by using the function bindValue(). After the values are bound the statement
gets executed.
There are several advantages of using prepared statements. The most im-
portant one is that it minimalize the risk of SQL injections. It will also reduce
parsing time and make the database more efficient. On the right side is an
example from my project where I insert a new product line into the data-
base using a prepared statement and binding the value.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 23

TRANSACTIONS

Transactions are used if two or more relational tables needs to be affected.
The reason for using transactions is to avoid invalid or non-synchronized
data. If we look at the products in my database they have a lot of relation-
ships to other tables. The products table is related to the product lines,
sizes and categories. If a product needs to be updated, the product line,
size and category of the product will also be updated and therefore several
tables are affected.
Let’s say that the update was done without a transaction and during this
update something goes wrong when updating the size but everything else
goes fine, then the product will be updated except the size. After this update
the data for that product will be incorrect because the size was not updat-
ed. This can be very fatal for the system and cause a lot of issues, therefore
it is vital to use transactions. Transactions can be divided in to three steps:

•	 beginTransaction() will start the transaction and therefore it needs to
be in the top.

•	 rollBack() is used when something goes wrong in the try/catch. If
something goes wrong the rollback will make sure that none of the
statements are executed, not even the ones that are successful.

•	 commit() makes sure to save (commit) the data into the database if
everything is successfully executed. Therefore, it needs to be in the end
after all statements.

To the right is an example from my project. This is after the transaction be-
gun and the main product was inserted. If that statement was executed it
goes on and tries to insert the category, and if that is executed it goes on
to the next statement that will insert the size. As you can see the size is the
last statement and therefore if that statement is executed it will commit or
else it will rollback.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 24

SHOP FILTERS

In the shop page the users have the ability to filter, sort and search for prod-
ucts. They can sort by price from high-to-low or low-to-high. They can also
filter by either product category or product line. To create these options, I
pass variables via the method GET with the user’s request. If the variable is
set I insert the value into an SQL statement.
The filters are made as an extra constraint for the query that only selects
the products with either a specific product line or category. The sorting is
created by using the command ORDER BY and then it is either set to ASC or
DESC depending on the user’s choice.
At last the search bar is made using LIKE and wildcards. As you can see in
the example from my project the user can search within the product line
and categories (more can always be added like description for example).
The search keyword is saved in a variable and inserted in the statement be-
tween two wildcards. By putting wildcards on both sides, the statement will
check if either the product line or category contains the search keyword.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 25

VIEWS

A VIEW is a virtual table that points to information from other tables but
doesn’t store anything in the actual database. VIEWS can contain data from
multiple tables using the principle of JOIN. The advantages of using VIEWS
are that you can select the exact information that is needed from the ta-
bles you wish, hide complicated queries and reuse the information from
the VIEW as many times as desired. It is very easy to fetch the information
from the VIEW via php you just need to select all from it.
In the example on the right side, I created a VIEW where all the products on
sale is displayed. The query is relatively long because I need to JOIN sever-
al tables. The screenshot in the bottom displays how easy it is to fetch the
information via php.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 26

STORED PROCEDURES

Stored procedures are queries that are saved in the database. The advan-
tage of using stored procedures is that you can save a long query and then
just call them as functions in php. If you need a query several places it is
more efficient to save it as a stored procedure because you will save space
an avoid repeated code.
To create a stored procedure, you can go into phpmyadmin under the tab
SQL and write the command. You need to start and end the query with DEL-
MITER so it is aware that you want to create a function. This is followed by
the command CREATE PROCEDURE and then the name of the procedure.
At last you type BEGIN and END and insert your query between those. Now
the query is created and you can now call it from php by using the com-
mand CALL followed by the name of the procedure.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 27

TRIGGERS

A trigger is a type of stored procedure associated with a specific table. The
trigger gets executed on a certain action for example on insert, update or
delete. You can use triggers for many things, in my project I chose to make
a trigger that capitalizes the first letter in the product description.
If the users of my system were stored in the database I would have chosen
to make a trigger on that table instead to for example capitalize first letter
in the name and lowercase the whole email. You can never know if a user
tries to write capital letters in their email or write their whole name with
lower cases, so in this situation it would have made even more sense.

To illustrate the concept, I created one trigger on my products table. You
start the trigger with the command CREATE TRIGGER followed by the name
of it. Then you decide the trigger time, event and on which table. In my
case the trigger happens before insert on the table products for each row
inserted. At last you insert your SQL statement between BEGIN and END.
It’s important to write “new” because it should affect the new value that is
about to be inserted.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 28

Install MongoDB
I installed version 3.6.3 of MongoDB. To install it I used a package manager
for Mac OS called “Home Brew”. Home Brew has a large software library
and therefore it made it possible to install MongoDB via the terminal. Af-
ter installing MongoDB, I downloaded Compass and installed that as well.
Compass is the user interface for the client.

Starting Mongo
Mongo has two main files “Mongod” which is the server and “Mongo” which
is the client. First, I needed to start the server. To start the server, I used the
command “mongod” in the terminal. The “d” in “mongod” stands for “dae-
mon” which means that the program will keep running in the background.
To connect to the client (Compass) I used the command “mongo” in the
terminal. To test if the connection was established correctly I used the com-
mand “show dbs” which shows all the databases.

Create database
To create a new database, I opened Compass and clicked on the plus icon
in the left sidebar. A window pops up and here the database and collection
name can be filled in. The collection name is similar to a table name in
MySQL. I created a small test project called “kea” just to show the concept
of how MongoDB works.

To get into the database that I just created I used the command “use kea”.

EXECUTION & COMMANDS MONGODB

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 29

CRUD

Create
There are two options to create a new object. You can either create it via
compass or via the terminal. To create a new object via compass you have
to click “New document” and just insert the object in the window that pops
up.

To insert the user via the terminal this command can be used:

•	 db stands for the database and since “kea” previously was selected as
the database it will be inserted into that

•	 users is the name of the collection that I want to target

•	 insert is the build in function used to create a new object in this case a
user. Inside the “insert” function the JSON object is written

It is also possible to use either insertOne() or insertMany() to create new ob-
jects. InsertMany() takes an array as the argument and looks like this:

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 30

Read
To read from the database several commands can be used. You have the
option to select all users in the database with this command:

Update
To update a document it is the build in function update() and the operator
$set that is used. The following command will update just one document:

There is also the option to use either db.users.findOne({}) or db.users.find-
Many({}). If you are expecting only one object to be returned it is more effi-
cient to use db.users.findOne({}). This will stop the search as soon as there
is a match and therefore make the search process much faster, similar to
when you use “break” when looping through JSON objects in a text file or
LIMIT: 1 in MySQL.

It is also possible to make the search for objects more specific like setting
parameters. This command will only return the users that has “31584084”
as their phone number:

And this command will return all users that has either “31584084” or
“34667123” as their phone number:

As well as in MySQL you use “set” to determine the new value for the up-
date. This will only affect one document (object) and the key or keys you
choose to target within that document. If you want to update two docu-
ments or more at the same time this command can be used:

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 31

Delete
When it comes to deleting it is divided into two parts: if you want to delete
the whole document or just one or some of the keys in the document. To
delete the whole document this command can be used:

This query will delete all document with where the value of the key “name”
is set to “Nikola”. To delete only one document this command will be more
suitable:

When it comes to deleting one or more keys in a document it is actually the
build in function update() and the operator $unset that is used. This is also
one of the similarities between MongoDB and text files. When operating
with text files it is the method unset() that is used to delete a key from an
object. To delete the key “name” from all document in MongoDB this com-
mand can be used:

It is essential that it is set to “multi:true” so it updates all documents, other-
wise it will just update the first one. To delete a key only from one specific
document the following command can be used:

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 32

This project has been a huge learning process for me. I started out knowing
almost nothing about databases and now I believe I have gained insight
and a broad understanding of the subject. I still have some considerations
and things that I might have done differently in a future project.

My ER Diagram states that one product can have many categories but look-
ing at the actual project all the products only have one category. Initially
when I created the ER Diagram I thought that each product would have
multiple categories, but when I set up the web shop and inserted data, I
realised that it wasn’t necessary.
The reason I chose not to change it was because I kept on thinking about it,
and for now one category is sufficient, but if this were a real web shop the
number of products would keep on increasing and then in the future there
would probably be a need for parent- and subcategories to organize the
products better.
As I learned during my research you should always try to create a database
that does not only handle the data you have now but also what will come
in the future so you don’t have to alter the database too many times. This
is an important principal that I will take with me for next time I have to de-
velop a database.

A thing that I would have liked to have worked even more with, if I had had
more time, was to make my project even more realistic. For now, the user
has to login to start shopping. In a real web shop the user would proba-
bly have the choice to login or shop without an account and then the cart
items would be saved in a session instead of in the actual database.
In the user’s cart is a button “Proceed to checkout” but when the button is
clicked nothing happens because I didn’t implement a payment solution
(wasn’t really relevant for databases). If this part of the project had been

REFLECTION

implemented there would also be a need for some extra tables like “orders”
and “orders_items” so the purchase could be finalised.

Another thing is how the users are saved. Instead of saving them in separate
databases I would have saved the whole database in MySQL. There are a lot
of small things in this project that I would have done differently if it were an
actual customer project. But since the important part of this project was
to demonstrate how to manage databases and different commands, not
everything in this project will seem as the optimal solution, because that
was not my first priority.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 33

CONCLUSION

In general, I am satisfied with my project and I have reached the goals I set out for it in the
beginning. I have learned how to manage two different types of databases, normalize it and
execute a variety of different commands. Furthermore, I have learned how to manage the GUI
for MySQL “phpmyadmin” and how to create, triggers, stored procedures, views and many
other things.
During the process of creating this database project I have acquired a lot of new knowledge, so
when I look back on the execution of it now, I know that some things could have been done in
an even more efficient way. Some small parts have already been corrected as I got a better un-
derstanding of the subject and some I learned from for future projects. By combining a strong
theoretical part with a practical project, I feel like I have accomplished the best result possible.

DATABASES EXAM PROJECT

NIKOLA WULF-ANDERSEN PAGE 34

LITERATURE

The MongoDB 3.6 Manual — MongoDB Manual 3.6. 2018. The MongoDB 3.6 Manu-
al — MongoDB Manual 3.6. [ONLINE] Available at: https://docs.mongodb.com/
manual/. [Accessed 25 April 2018].

Install MongoDB Community Edition on macOS — MongoDB Manual 3.6. 2018.
Install MongoDB Community Edition on macOS — MongoDB Manual 3.6. [ON-
LINE] Available at: https://docs.mongodb.com/manual/tutorial/install-mon-
godb-on-os-x/#install-mongodb-community-edition-with-homebrew. [Accessed
25 April 2018].

YouTube. 2018. Entity Relationship Diagram (ERD) Tutorial - Part 1 - YouTube.
[ONLINE] Available at: https://www.youtube.com/watch?v=QpdhBUYk7Kk. [Ac-
cessed 30 April 2018].

Essential SQL. 2018. Database Normalization Explained in Simple English - Es-
sential SQL . [ONLINE] Available at: https://www.essentialsql.com/get-ready-to-
learn-sql-database-normalization-explained-in-simple-english/. [Accessed 7 May
2018].

Microsoft. 2018. Microsoft Support. [ONLINE] Available at: https://support.micro-
soft.com/en-gb/help/283878/description-of-the-database-normalization-basics.
[Accessed 7 May 2018].

PHP: MySQL Database. 2018. PHP: MySQL Database. [ONLINE] Available at:
https://www.w3schools.com/php/php_mysql_intro.asp. [Accessed 8 May 2018].

Appropriate Uses For SQLite. 2018. Appropriate Uses For SQLite. [ONLINE] Availa-
ble at: https://www.sqlite.org/whentouse.html. [Accessed 9 May 2018].

MySQL - Wikipedia. 2018. MySQL - Wikipedia. [ONLINE] Available at: https://
en.wikipedia.org/wiki/MySQL. [Accessed 9 May 2018].

Entity Relationship Diagram - Everything You Need to Know About ER Diagrams
. 2018. Entity Relationship Diagram - Everything You Need to Know About ER
Diagrams . [ONLINE] Available at: https://www.smartdraw.com/entity-relation-
ship-diagram/. [Accessed 10 May 2018].

Difference between Primary Key and Foreign Key. 2018. Difference between Pri-
mary Key and Foreign Key. [ONLINE] Available at: https://www.dotnettricks.com/
learn/sqlserver/difference-between-primary-key-and-foreign-key. [Accessed 11
May 2018].

PHP Prepared Statements. 2018. PHP Prepared Statements. [ONLINE] Available
at: https://www.w3schools.com/php/php_mysql_prepared_statements.asp.
[Accessed 12 May 2018].

MySQL Tutorial. 2018. Create Trigger in MySQL. [ONLINE] Available at: http://
www.mysqltutorial.org/create-the-first-trigger-in-mysql.aspx. [Accessed 17 May
2018].

SiteGround Knowledge Base. 2018. What are MySQL triggers and how to use
them?. [ONLINE] Available at: https://www.siteground.com/kb/mysql-trig-
gers-use/. [Accessed 17 May 2018].

Essential SQL. 2018. What is a Relational Database View? - Essential SQL . [ON-
LINE] Available at: https://www.essentialsql.com/what-is-a-relational-data-
base-view/. [Accessed 18 May 2018].

